Motion Analysis Methods:

Sampling, Fourier Analysis and Filtering

Engr325	Lab #7	Winter, 2019		
	Video Analysis and Filtering			1
Name				
Partner (s)		Grade/10		
Internalisentiere				
The goal of this lab is to obtain a appropriate smoothing to obtain to	position-time dataset from video analysis a useful velocity and acceleration graphs.	and create a Butterworth filter with		2
Objectives • Understand the basics of	video digitization;		1	
 Obtain useful 2D data fro Understand how digital f 	om a video clip; iltering can increase the quality of results.			
Equipment Provided • Computer with appropria	te software.			
References Video digitization and di 	gital filtering textbooks and web sites.			16
Procedure				
 On the class website und human vertical jump with provided, .mp4 and .mov 	er the heading of Lab #7, you will find a vi h markers indicating various joint centers, i Download the .mp4 video file and save it	ideo file showing a side view of a including at the hip. Two formats are to your lab computer (sometimes		E
the mov format works be	etter, but see how your results are with the.	mp4 file).		-
			and the second se	

Why does taking the derivative of position-time data seem to amplify the noise in a signal?

Low Frequency Signal (f = 1 H	[z)	High Frequency Noise (f = 10 Hz)
$f(t) = 100 \sin(2 \pi f t)$		$f_n(t) = 1 \sin(2 \pi f t)$
$f'(t) = 200 \pi f \cos(2 \pi f t)$		$f'_{n}(t) = 2 \pi f \cos(2 \pi f t)$
$f''(t) = -400 \pi^2 f^2 \sin(2\pi f t)$		$f''_{n}(t) = -4 \pi^{2} f^{2} \sin(2 \pi f t)$
Signal to Noise Ratio:	100 : 1 10 : 1 1 : 1	

$$\omega_c = \tan\left(\frac{\pi f_c}{f_s}\right)$$

$$K_1 = \sqrt{2}\omega_c \text{ for a Butterworth filter,}$$
or, $2\omega_c$ for a critically damped filter
$$K_2 = \omega_c^2, \quad a_0 = \frac{K_2}{(1+K_1+K_2)} \quad a_1 = 2a_0, \quad a_2 = a_0$$

$$K_3 = \frac{2a_0}{K_2}, \quad b_1 = -2a_0 + K_3$$

$$b_2 = 1 - 2a_0 - K_3, \quad \text{or,} \quad b_2 = 1 - a_0 - a_1 - a_2 - b_1$$

f_s/f_c	a ₀	<i>a</i> ₁	<i>a</i> ₂	<i>b</i> ₁	<i>b</i> ,
4	0.29289	0.58579	0 29289	0.0000	-0.1715/
5	0.20657	0.41314	0.20657	0.36953	-0.19582
6	0.15505	0.31010	0.15505	0.62021	-0.24041
7	0.12123	0.24247	0.12123	0.80303	-0.28796
8	0.09763	0.19526	0.09763	0.94281	-0.33333
9	0.08042	0.16085	0.08042	1.05333	-0.37502
10	0.06746	0.13491	0.06746	1.14298	-0.41280
11	0.05742	0.11484	0.05742	1.21719	-0.44687
12	0.04949	0.09898	0.04949	1.27963	-0.47759
13	0.04311	0.08621	0.04311	1.33291	-0.50533
14	0.03789	0.07578	0.03789	1.37889	-0.53045
15	0.03357	0.06714	0.03357	1.41898	-0.55327
16	0.02995	0.05991	0.02995	1.45424	-0.57406
17	0.02689	0.05379	0.02689	1.48550	-0.59307
18	0.02428	0.04856	0.02428	1.51338	-0.61051
19	0.02203	0.04407	0.02203	1.53842	-0.62655
20	0.02008	0.04017	0.02008	1.56102	-0.64135
21	0.01838	0.03676	0.01838	1.58152	-0.65505
22	0.01689	0.03378	0.01689	1.C0020	-0.66776
23	0.01557	0.03114	0.01557	1.61730	-0.67958
24	0.01440	0.02880	0.01440	1.63299	-0.69060
25	0.01336	0.02672	0.01336	1.64746	-0.70090

_1	A B	С	D	E	F	G
1	Butterworth Filter Co	oeffic	ients: V	ertical Jump	Filtering	
2					A0	0.06746
3			Wc	0.32492	A1	0.13491
4	SAMPLING FREQUENCY:	60	K1	0.45951	A2	0.06746
5	CUTOFF FREQUENCY:	6	K2	0.10557	B1	1.14298
6			КЗ	1.27789	B2	-0.41280

